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Abstract. The large-mass behaviour of loop variables in Maxwell–Chern–Simons theory is
analysed by means of a gauge-field transformation which allows us to reset the Maxwell–Chern–
Simons action to pure Chern–Simons.

1. Introduction

In recent works [1, 2] it has been established that three-dimensional gauge theories in the
presence of the topological Chern–Simons term can be cast in the form of a pure Chern–
Simons action through a local covariant redefinition of the gauge connection. For instance, in
the case of the standard Yang–Mills term

∫
FF , we obtain

SCS(A) +
1

4m
tr
∫

d3x FµνF
µν = SCS(Â) (1.1)

with

Âµ = Aµ +
∞∑
n=1

1

mn
ϑnµ (1.2)

and

SCS(A) = 1
2 tr

∫
d3x εµνρ

(
Aµ∂νAρ + 2

3gAµAνAρ
)
. (1.3)

The two parametersg,m in the expressions (1.1) and (1.3) can be identified, respectively, with
the gauge coupling and with the topological mass. The coefficientsϑnµ in equation (1.2) have
been proven [2] to transform covariantly under gauge transformations and can be expressed in
terms of the curvatureFµν and its covariant derivatives. This implies that the redefined field
Âµ is still a connection. This property has led to an attractive geometrical interpretation of
the Chern–Simons term as a kind of topological generator for the classical Yang–Mills-type
actions [2].

The existence of the transformation (1.2) has also been exploited at the quantum level.
Several results have been obtained for the quantum effective actions of different systems. In
the case of the massive topological Yang–Mills (1.1), the redefinition (1.2) has allowed for
a purely algebraic proof of the ultraviolet finiteness of the model [2]. Moreover, in the case
of the effective action corresponding to the Abelian fermionic determinant of a massive two-
component spinor field, equation (1.2) has been extended at the quantum level in order to
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account for the nonlocal quantum corrections [3]. As a consequence, it has been possible to
prove that the infinite number of one-loop diagrams corresponding to the perturbative expansion
of the fermionic determinant can be reabsorbed into the pure Chern–Simons, up to a field
redefinition [3].

On the other hand, it is known that pure Chern–Simons theory can be recovered as the
infinite-mass limitm→∞ of the massive topological Yang–Mills action (1.1). This property
has been proven to hold for both the 1PI effective action [4] and for the vacuum expectation
value of the Wilson loop [5]. We thus expect that, for a finite large value of the mass parameter
m (i.e. a low-energy regime), the effects of the presence of the Yang–Mills term show up in the
form of a power series in 1/m. Furthermore, being the field redefinition (1.2) a local expansion
in 1/m, it gives us a natural way to deal with the large-mass corrections which affect the
vacuum expectation value of the observables, i.e. of the nontrivial gauge-invariant quantities.

This is the aim of this paper. In particular, we shall investigate whether the redefinition
(1.2) can be used as an effective computational tool in order to characterize the large-mass
behaviour of the observables. In this work we shall restrict ourselves to the Abelian case. The
main idea is to use equation (1.2) as a change of variables in the path integral. In doing this,
one picks up the Jacobian of the transformation and one has to re-express the observable under
consideration in terms of the redefined field̂Aµ, which, now being a power series in 1/m,
will systematically produce a local expansion of the observable in powers of 1/m. However,
such a change of variables in the path integral leads the Boltzmann weight to take the form of
the pure Chern–Simons action. This procedure may therefore have the practical advantage of
performing computations by making use of the Chern–Simons propagator

GCS
µν = −

1

4π
εµνρ∂

ρ 1

|x − y| =
1

4π
εµνρ

(x − y)ρ
|x − y|3 (1.4)

instead of the more complicated one corresponding to the quadratic part of the action (1.1),
i.e.

GMCS
µν =

1

4π
εµνρ

(x − y)ρ
|x − y|3 +

m

4π

e−m|x−y|

|x − y|
(
gµν − 1

m
εµνρ

(x − y)ρ
|x − y|2 (1 +m|x − y|)

)
. (1.5)

In other words, in the case of a large value ofm, the field redefinition (1.2) will allow us to
shift the mass dependence from the Boltzmann weight directly to the observable, so that the
expectation value can be obtained by making use of the pure Chern–Simons propagator. As
an example of this set-up we shall use the field redefinition (1.2) in the case of the Abelian
Maxwell–Chern–Simons theory in flat spacetime

SMCS(A) = 1

2

∫
d3x εµνρAµ∂νAρ +

1

4m

∫
d3x FµνF

µν (1.6)

in order to compute the large-mass corrections to the loop factor [6, 7]

W(γ, γ ′) = e−
∮
γ

dxµ
∮
γ ′ dy

ν 〈Aµ(x)Aν(y)〉 (1.7)

whereγ, γ ′ are two distinct (nonintersecting) smooth closed oriented curves (which define a
two-component linkL(γ, γ ′) [8]). As discussed by [7], the relevance of the factorW(γ, γ ′) is
due to the fact that it carries the information concerning the statistics of the quantum fluctuations
of the(2 + 1)-dimensional Abelian Higgs model, thanks to a random-walk representation for
the gauge-invariant Green’s functions. In particular, by making use of the redefinition (1.2), we
shall be able to prove that all the expected corrections in the inverse of the mass parameterm

are actually absent, providedγ, γ ′ are two disjoint curves, one of which may wind around the
other. In other words, the double line integral

∮
γ

dxµ
∮
γ ′ dy

ν〈Aµ(x)Aν(y)〉 computed with the
Maxwell–Chern–Simons action yields, in the large-mass limit, the linking numberχ(γ, γ ′).
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It is worth remarking here that this set-up could have useful applications for the three-
dimensional bosonization of fermionic systems for a large value of the fermion mass. We recall
in fact that the large-mass expansion of the so-called three-dimensional fermionic determinant
is one of the basic ingredients of our present understanding of three-dimensional bosonization
[9].

The paper is organized as follows. In section 2 we discuss the main properties of the
field redefinition (1.2) in the case of the Abelian Maxwell–Chern–Simons theory. In section 3
the details of the computation of the double line integral

∮
γ

dxµ
∮
γ ′ dy

ν〈Aµ(x)Aν(y)〉 will be
given. In section 4 we discuss the extension of this result to a more general class of Abelian
actions as well as to a generic linkL(γ1, . . . , γn). Section 5 is devoted to the case in whichγ
andγ ′ identify the same curve, expression (1.7) becoming there the expectation value of the
Abelian Wilson loop [5, 6, 10, 11]. The example of a planar loop will be reported in detail.

Although the present work deals with the large-mass behaviour of the loop variables, a
simple framework for the case of the small-mass corrections is provided in the appendix.

2. The Maxwell–Chern–Simons action

As already mentioned, the Abelian Maxwell–Chern–Simons action can be reset to a pure
Chern–Simons term

SMCS(A) = 1
2

∫
d3x εµνρAµ∂νAρ +

1

4m

∫
d3x FµνF

µν = SCS(Â) (2.1)

through a suitable gauge field redefinition of the kind

Âµ = Aµ +
∞∑
n=1

1

mn
ϑnµ. (2.2)

As proven in [2] by using BRST cohomological techniques, the coefficientsϑnµ turn out
to depend only on the field strength and its derivatives. In the present Abelian case their
computation is rather straightforward. For instance, the first six coefficients are found to be

ϑ1
µ = 1

4εµνρF
νρ ϑ2

µ = − 1
8∂

νFµν

ϑ3
µ = − 1

32εµνρ∂
2Fνρ ϑ4

µ = 5
128∂

2∂νFµν

ϑ5
µ = 7

512εµνρ∂
4Fνρ ϑ6

µ = − 21
1024∂

4∂νFµν.

(2.3)

Although the higher-order coefficients can be easily obtained, the above expressions give us a
simple and clear understanding of the general properties of theϑnµ’s. They can be summarized
as follows:

• the coefficientsϑnµ are divergenceless, i.e.

∂µϑnµ = 0 (2.4)

• they are gauge invariant and depend linearly on the gauge fieldAµ.

As one can easily understand, these properties follow from the Abelian character of the
Maxwell–Chern–Simons action (2.1). They will turn out to be of great relevance in order to
compute the large-mass behaviour ofW(γ, γ ′). In particular, from equation (2.4) it follows
that the general form of the field transformation (2.2) can be written in terms of the two
transverse projectorsεµνρ∂ρ and(gµν∂2 − ∂µ∂ν) as

Âµ = Aµ +
1

m
εµνρf (∂

2/m2)∂νAρ − 1

m2
h(∂2/m2)(gµν∂

2 − ∂µ∂ν)Aν (2.5)
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wheref andh are power series in the three-dimensional Laplacian

f (∂2/m2) = 1

2
− 1

16

∂2

m2
+

7

256

∂4

m4
+ · · ·

h(∂2/m2) = −1

8
+

5

128

∂2

m2
− 21

1024

∂4

m4
+ · · · .

(2.6)

Observe that from equation (2.4) it follows that the two gauge connectionsÂµ andAµ have
the same divergence,

∂µÂµ = ∂µAµ (2.7)

which implies that, in a covariant Lorentz-type gauge condition, the gauge-fixing term remains
unchanged when one moves fromAµ to Âµ.

Let us give here, for later use, the coefficients of the inverse transformation (2.3) which
has, of course, the same general form of equation (2.5):

Aµ = Âµ +
1

m
εµνρf̂ (∂

2/m2)∂νÂρ − 1

m2
ĥ(∂2/m2)(gµν∂

2 − ∂µ∂ν) Âν (2.8)

with

f̂ (∂2/m2) = −1

2
+

5

16

∂2

m2
− 63

256

∂4

m4
+ · · ·

ĥ(∂2/m2) = 3

8
− 35

128

∂2

m2
+

231

1024

∂4

m4
+ · · · .

(2.9)

It should also be remarked that equations (2.5) and (2.8), being linear in the fieldsAµ, Âµ,
imply that the Jacobian det(δAν/δÂµ) corresponding to the change of variablesAµ→ Âµ is
field independent, and therefore it does not contribute to the transformed measureDÂ in the
path integral.

We are now ready to evaluate the large-mass effects to the double line integral of the
expression (1.7). This will be the task of the next section.

3. Computation of the double-line integral

In order to compute the line integral
∮
γ

dxµ
∮
γ ′ dy

ν〈Aµ(x)Aν(y)〉 in the Maxwell–Chern–
Simons theory we have first to fix the gauge. Adopting a transverse Landau gauge, we can
write∮
γ

∮
γ ′
〈A(x)A(y)〉MCS =

∫
DADb

∮
γ

dxµ
∮
γ ′ dy

νAµ(x)Aν(y) ei(SMCS(A)+
∫

d3x b∂A)∫
DADb ei(SMCS(A)+

∫
d3x b∂A)

(3.1)

whereb is the Lagrange multiplier implementing the gauge condition. Let us now perform
the change of variables (2.8). Moreover, recalling that the corresponding Jacobian is field
independent and that, from equation (2.7), the Landau gauge condition is left invariant, we
obtain∮
γ

dxµ
∮
γ ′

dyν〈Aµ(x)Aν(y)〉MCS =
∮
γ

dxµ
∮
γ ′

dyν〈Aµ(Â(x))Aν(Â(y))〉CS (3.2)

where∮
γ

dxµ
∮
γ ′

dyν〈Aµ(Â(x))Aν(Â(y))〉CS

=
∫
DÂDb

∮
γ

dxµ
∮
γ ′ dy

ν(Âµ(x))Aν(Â(y)) ei(SCS(Â)+
∫

d3x b∂Â)∫
DÂDb ei(SCS(Â)+

∫
d3x b∂Â)

. (3.3)
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We see therefore that the expectation value of
∮
γ

∮
γ ′ 〈A(x)A(y)〉MCS in the Maxwell–Chern–

Simons theory can be obtained by computing the expectation value of the transformed quantity∮
γ

∮
γ ′ 〈A(Â(x))A(Â(y))〉CS in the (topological) pure Chern–Simons theory. Therefore∮

γ

dxµ
∮
γ ′

dyν〈Aµ(Â(x))Aν(Â(y))〉CS=
∮
γ

dxµ
∮
γ ′

dyν �µσ (x)�νλ(y)
〈
Âσ (x) Âλ(y)

〉
CS

(3.4)

with �µσ (x) given by

�µσ (x) =
(
gµσ +

1

m
εµρσ f̂ (∂

2
x /m

2)∂ρx −
1

m2
ĥ(∂2

x /m
2)(gµσ ∂

2 − ∂µ∂σ )x
)
. (3.5)

In order to evaluate expression (3.4) let us recall that the Landau propagator of the pure Chern–
Simons theory,

〈Âσ (x) Âλ(y)〉CS= − 1

4π
εσλτ ∂τ

1

|x − y| (3.6)

is transverse,

∂σ 〈Âσ (x) Âλ(y)〉CS= 0 (3.7)

and that, from

∂2 1

|x − y| = −4πδ3(x − y) (3.8)

we obtain

∂2〈Âσ (x) Âλ(y)〉CS= 0 for x 6= y. (3.9)

This last identity can be applied directly to equation (3.4), asγ and γ ′ are two disjoint
(nonintersecting) curves. Therefore the pointsx andy will never coincide. As a consequence,
all the Laplacians in the factors� of equation (3.4) can be eliminated. The same occurs for the
terms containing the derivatives∂µ∂σ and∂ν∂λ, due to the transversality of the Chern–Simons
propagator. Expression (3.4) thus reduces to∮
γ

dxµ
∮
γ ′

dyν〈Aµ(Â(x))Aν(Â(y))〉CS= − 1

4π

∮
γ

dxµ
∮
γ ′

dyν εµντ ∂
τ 1

|x − y|
− 1

4πm

∮
γ

dxµ
∮
γ ′

dyν εµρσ ε
σλ
ν∂
ρ∂λ

1

|x − y|
+

1

16πm2

∮
γ

dxµ
∮
γ ′

dyν εµρσ εντλε
σλα∂ρ∂τ ∂α

1

|x − y|
= − 1

4π

∮
γ

dxµ
∮
γ ′

dyν εµντ ∂
τ 1

|x − y| (3.10)

where all the 1/m-dependent terms turn out to identically vanish or to yield a total derivative
upon contraction of theεµνρ factors. For the final result we therefore obtain [8]∮

γ

dxµ
∮
γ ′

dyν〈Aµ(x)Aν(y)〉MCS = χ(γ, γ ′) (3.11)

whereχ(γ, γ ′) is the linking number of the two curvesγ andγ ′. We may see, then, that,
as announced, the factorW(γ, γ ′) is not affected by large-mass corrections in 1/m. As one
can easily understand, this is due to the fact that the two curves do not intersect each other.
It should also be remarked that the use of the transformation (2.5) has allowed us to perform
the computations straightforwardly by making use of the properties (3.7) and (3.9) of the pure
Chern–Simons propagator.
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4. Generalization

Following the algebraic cohomological set-up of [1, 2], it follows that the above result (3.11)
can be easily extended to the case in which we add to the Maxwell–Chern–Simons action (2.1)
higher derivatives terms of the type

αn

m2n+1

∫
d3x Fµν(∂

2)nFµν
βn

m2n

∫
d3x εµνρAµ∂ν(∂

2)nAρ n > 1 (4.1)

whereαn andβn are arbitrary dimensionless parameters.
These terms, being quadratic in the gauge fieldAµ, can be reabsorbed into the pure Chern–

Simons action through a linear field redefinition of the kind (2.5). Everything works as before,
with the result that the double line integral

∮
γ

dxµ
∮
γ ′ dy

ν〈Aµ(x)Aν(y)〉 is not affected, in the
large-mass limit, by corrections in 1/m, meaning that it is in fact independent of the parameters
αn, βn. We recall here that the terms of equation (4.1), together with the Maxwell–Chern–
Simons action (1.6), appear in the large-mass expansion of the two-point Green’s function
(i.e. of the spinor vacuum polarization) of the effective action corresponding to the Abelian
fermionic determinant of a two-component massive spinor [12].

Finally, it is worth underlining that all the results established here can be generalized
straightforwardly to a generic line integralI (γ1, . . . , γn) of the type

I (γ1, . . . , γn) =
∮
γ1

dxµ1
1

∮
γ2

dxµ2
2 . . .

∮
γn

dxµnn 〈Aµ1(x1) . . . Aµn(xn)〉 (4.2)

where the curvesγ1, . . . , γn belong to an-component linkL(γ1, . . . , γn).

5. Large-mass behaviour of the Wilson Loop

In this section we consider the degenerate case of the Wilson loop, which amounts to computing,
within the Maxwell–Chern–Simons context, the link variableI (γ, γ ′)whenγ andγ ′ both refer
to the same curve, that is,

I (γ, γ ) =
∮
γ

dxµ
∮
γ

dyν〈Aµ(x)Aν(y)〉MCS. (5.1)

It is worth noting that the double line integral (5.1) computed in pure Chern–Simons is finite
and can be defined as the writhing number of the curveγ [8, 13]. Moreover, the authors of
[5] have been able to show that (5.1) computed in Maxwell–Chern–Simons theory yields, in
the infinite mass limitm→∞, the so-called self-linking number [8, 13, 14]. They have also
proven that, by means of a finite renormalization, the self-linking can be converted into the
writhing number, thus recovering the previous infinite-mass limit results of [6, 10, 11].

However, to our knowledge, the mass dependence of the Abelian Wilson loop for a finite
large value of the mass parameterm has not yet been completely worked out. Our purpose
here is to show how the present set-up can be useful in evaluating the large-mass contributions
which affect the expression (5.1).

For largem, we perform once more the field redefinition (2.8), which allows us to use the
Chern–Simons propagator. It leads to an expansion ofI (γ, γ ) in 1/m similar to the one given
in (3.10); however, we now cannot eliminate all 1/m-dependent terms, because in the present
case the integration variablesx andy both refer to points along the same curve. The first few
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terms in the expansion are seen to be

I (γ, γ ) = − 1

4π

∮
γ

dxµ
∮
γ

dyν εµνα∂
α
x

1

|x − y| −
1

m

∮
γ

dxµ
∮
γ

dyµ δ
3(x − y)

− 1

m2

∮
γ

dxµ
∮
γ

dyν εµνα∂
α
x δ

3(x − y) +
1

m3

∮
γ

dxµ
∮
γ

dyµ ∂
2
x δ

3(x − y)

+O
(

1

m4

)
. (5.2)

The first term defines what is called the writhing numberw(γ ) of a curveγ [8, 13]. It can be
connected to the so-called self-linking numberL(γ ) by

w(γ ) = L(γ )− T (γ )
whereT (γ ) is the twist of the framing bundle used to defineL(γ ) [8, 13]. In the following, we
shall use a technique to analyse planar curves, in which case the writhing number vanishes†.

In order to calculate the mass-dependent corrections, we first establish a regularization
for the delta function through the well known representation

δ3(x − y) = lim
α→0

1

(2π)3

∫
d3p

1

(p2)α
eip(x−y) (5.3)

and theα → 0 limit will be taken at the end of the computation. For the first contribution of
order 1/m in the equation (5.2) we thus write

Jα ≡
∮
γ

dxµ
∮
γ

dyµ δ
3(x − y)

= 1

(2π)3

∫
d3p

1

(p2)α
f µγ (p)f

∗
µγ (p) (5.4)

where

f µγ (p) =
∮
γ

dxµ eipx (5.5)

is the Fourier transform of the line element. Observe that for closed curves

pµf
µ
γ (p) = 0. (5.6)

In order to give a more concrete idea of the evaluation of the integralJα we specify the curve
defining the loop. Therefore, we shall concentrate on the case in which the curveγ is a circle
of radiusR.

Since the curve is planar, we may decompose the momentum variable as in [15, 16]:

pµ = p̂µ + p⊥µ
where p̂µ is the projection ofpµ over the plane containingγ , andp⊥µ is the orthogonal
component to that plane. From the definition (5.5), we also have thatf µγ (p) = f µγ (p̂) and

εµνρp̂
µf νγ (p̂)f

∗ρ
γ (p̂) = 0. (5.7)

Thus,

Jα = 2

(2π)3

∫
d2p̂

(∫ ∞
0

dp⊥
1

((p⊥)2 + p̂2)α

)
|fγ (p̂)|2.

The integral in the orthogonal component is evaluated [15, 16] as∫ ∞
0

dp⊥
1

((p⊥)2 + p̂2)α
= 1

2

(
p̂2
) 1

2 (1−2α) 0
(
α − 1

2

)
0
(

1
2

)
0(α)

† We recall here thatγ is a smooth closed curve without self-intersecting points.



2476 V E R Lemes et al

also, for a circle of radiusR [15, 16],

|fγ (p̂)|2 = 4π2R2J 2
1 (p̂R)

whereJ1 is the Bessel function. By performing the angular integration in d2p, it follows that

Jα =
0
(
α − 1

2

)
0
(

1
2

)
0(α)

R2
∫ ∞

0
dp̂ p̂2−2αJ 2

1 (p̂R) (5.8)

where nowp̂ denotes the radial variable. The solution to the above integral may be taken from
the table [17], leading to the expression

Jα = R2α−1

22α−2

0(2α − 2)0
(

1
2

)
0
(

1
2(5− 2α)

)
0(α)0

(
1
2(2α + 1)

)
0
(

1
2(2α − 1)

) . (5.9)

Theα→ 0 limit may now be performed, giving finally

J0 = − 3

4R
. (5.10)

For planar curves, one can show that all even powers in 1/mvanish automatically by making use
of equation (5.7). Therefore, the next nonvanishing contribution forI (γ, γ ) in equation (5.2)
is that of order 1/m3, i.e.∮

γ

dxµ
∮
γ

dyν ∂2
x δ

3(x − y) = −Jα−1 (5.11)

which, using equation (5.9), is computed to be

Jα−1 = R2α−3

22α−4

0(2α − 4)0
(

1
2

)
0
(

1
2(7− 2α)

)
0(α − 1)0

(
1
2(2α − 1)

)
0
(

1
2(2α − 3)

) .
Thus, in the limitα→ 0, we obtain

J−1 = 15

32R3
. (5.12)

Finally, substituting equations (5.10) and(5.12) into equation (5.2), and remembering that the
writhing of a circle is zero, for the large-mass corrections toI (γ, γ ) in the case of a circle we
obtain the expansion

I (γ, γ ) = 3

4mR
− 15

32m3R3
+O

(
1

m5

)
. (5.13)

The higher-order corrections can be evaluated in a similar way and lead to the general formula

I (γ, γ ) =
∞∑
n=0

1

(mR)2n+1

1

n + 1

0
(

1
2(5 + 2n)

)
0
(

1
2(1− 2n)

) . (5.14)

6. Conclusion

We have proven that, in the large-mass limit, the loop factorW(γ, γ ′)evaluated in the Maxwell–
Chern–Simons theory is not affected by 1/m-corrections, provided the two curvesγ, γ ′ do
not touch each other.

It is worth underlining that this result has been achieved by means of the field redefinition
(2.5), which turns out to provide a very useful computational tool in order to deal with the
large-mass dependence of loop variables in three-dimensional gauge theories, including the
case of the Wilson loop.
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Appendix. Small-mass expansion

In this appendix we discuss briefly, along the lines developed in the present paper, the
complementary question of the small-mass behaviour of the link variable

I (γ, γ ′) =
∮
γ

dxµ
∮
γ ′

dyν〈Aµ(x)Aν(y)〉MCS (A.1)

in the context of the Maxwell–Chern–Simons theory.
For this purpose, we make use of another kind of field redefinition which now allows us

to reabsorb the Chern–Simons term into the Maxwell one in the action, that is,

1

2

∫
d3x εµνρAµ∂νAρ +

1

4m

∫
d3x FµνF

µν = 1

4m

∫
d3x F̂µνF̂

µν (A.2)

through a suitable gauge-field transformation of the type

Aµ = Âµ +
∞∑
n=1

mnθ̂nµ (A.3)

in which the first few coefficientŝϑnµ are computed to be

ϑ̂1
µ =

1

4
εµνρ

1

∂2
Fνρ ϑ̂2

µ = −
3

8

1

∂4
∂νFµν

ϑ̂3
µ =

5

32
εµνρ

1

∂4
Fνρ ϑ̂4

µ =
13

64

1

∂6
∂νFµν.

(A.4)

We observe that, like in the redefinition of section 2, theϑ̂nµ’s are gauge invariant and transverse.
However they are nonlocal, as may be inferred from the presence of the inverse of the

Laplacian. This feature will spoil the integralI (γ, γ ′) in equation (A.1) of any topological
meaning. As one can easily understand, this is due to the fact that the small-mass behaviour
is dominated by the pure Maxwell term which, of course, is not of a topological nature.

Such a change of variables leads to a computation of the link variable within the pure
Maxwell theory:

I (γ, γ ′) =
∮
γ

dxµ
∮
γ ′

dyν〈Aµ(Â(x))Aν(Â(y))〉Maxwell.

We obtain, therefore, a small-mass expansion forI (γ, γ ′), whose first constributions are

I (γ, γ ′) =
∮
γ

dxµ
∮
γ ′

dyν 〈Âµ(x) Âν(y)〉Maxwell

− m
4π

∫
d3z

∮
γ

dxµ
∮
γ ′

dyν εναβ
1

|y − z|∂
α
z 〈Âµ(x) Âβ(z)〉Maxwell +O

(
m2
)
.

(A.5)



2478 V E R Lemes et al

We may now substitute in the above expression for the Maxwell propagator,

〈Âµ(x) Âν(y)〉Maxwell = m

4π

1

|x − y|gµν (A.6)

with the result

I (γ, γ ′) = m

4π

∮
γ

dxµ
∮
γ ′

dyν
1

|x − y|gµν

+

(
m

4π

)2 ∫
d3z

∮
γ

dxµ
∮
γ ′

dyν εµνα
1

|y − z|∂
α
x

1

|x − z| +O(m3). (A.7)

Two remarks are in order. First, we see that, as already underlined, the topological
character ofI (γ, γ ′) is lost in the small-mass regime. Second, the contributions may be
evaluated only after specifying the curvesγ andγ ′.

Let us conclude by underlining that equation (A.7) also applies to the case of the Wilson
loop (5.1). For instance, for the first contribution of the expansion (A.7), we obtain

I (γ, γ ) = m

4π

∮
γ

dxµ
∮
γ

dyµ
1

|x − y| +O
(
m2
)
. (A.8)

In the case of the circle, the above integral can be evaluated by following the same procedure
of section 5, yielding

I (γ, γ ) = mJα+1 +O
(
m2
)

= mR
2α+1

22α

0(2α)0
(

1
2

)
0
(

1
2(3− 2α)

)
0(1 +α)0

(
1
2(2α + 3)

)
0
(

1
2(2α + 1)

) +O
(
m2
)
. (A.9)

As expected, the limitα→ 0 is singular, due to the presence of0(2α). We have thus recovered
the well known divergent contribution to the Wilson loop of the pure Maxwell term in three
dimensions [5, 15, 16].
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